
Lecture 14. Mathematical Models Cont’d 

1 Structure of the Atmosphere  

1.1 Vertical structure of the Atmosphere 

 



1.2 General Circulation 

    

Forecasting of El-Nino by GFDL model: 
http://www.gfdl.noaa.gov/products/vis/images/gallery/el-nino_la-nina.mov

 

http://www.gfdl.noaa.gov/products/vis/images/gallery/el-nino_la-nina.mov


   
1.3 Scales  

 
Large Scale (Macroscale, global scale, synoptic scale) 

Trade winds, Rossby, Walker, ENSO, NAO, etc.  

 

Medium Scale (Mesoscale, regional scale) 
Sea-breezes, mountain circulations (foehns, Mistral), etc. 

 

Small Scale (Microscale, local scale) 
Heat islands, internal boundary layers, tornadoes, etc. 

2 Primitive Equations  

2.1 Equation of State 

Equation of state is 

vRTp

 

where p is the pressure [N.m-2], is the air density [kg.m-3], R= 287 [J.kg-1.K-

1] is the gas constant, Tv is the virtual temperature [K] given by 
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where T is the absolute temperature [K], and q is the specific humidity. The 
specific humidity q is expressed as the ratio of mass of water vapor mw and the 
mass of moist air ma, and is related to the mixing ratio of water vapor MR by 

MR

MR

m
m

m
m

mm

m

m

m
q

d

w

d

w

dw

w

a

w

11 

NB. The relative humidity is defined as the ratio of the partial pressure of water 
to its saturation vapor pressure at the same temperature, but as q is generally 
prognosed in models RH is calculated as RH=q/qsat(T). A formula proposed by 
Buck  (J. App. Meteor., 1527-1532, 1981) is 
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where p is the pressure [mb], and T the temperature [Celsius] 

The concentration of air molecules can be calculated from the equation of state. 
For standard atmospheric conditions (T=298oK and p=1.01325x105 [N.m-2]) 
and using R=8.314 [N.m.mol-1.K-1], the concentration c is given 

by 1910463.2
298314.8
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2.2 Momentum equation 
In an inertial reference frame attached to the Earth, Newton’s second law of  
may be written as (cf. Holton, An introduction to dynamic meteorology, 
Academic Press, 1979): 
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Where u is the wind vector [m.s-1], p
1

is the pressure gradient force, is 

the air density [kg.m-3], u is the Coriolis force,  ( =7.292x10-5 ) [sr.s-1] is 
the vector of the angular velocity of the Earth’s rotation, g  is the effective 

gravity (centrifugal+gravity), rF is the friction force. 

 

For a system of coordinates (x,y,z) fixed at the Earth’s surface, and related to 
the longitude  and latitude , the components of the Coriolis force in the 
zonal (x), meridional (y), and vertical (z) directions are 
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By neglecting the second term of the first expression and the third expression, 
the equations of motion are 
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where sin2cf is the Coriolis parameter.  

Geostrophic approximation considers that the pressure field is balanced by 
horizontal velocity (which is valid for synoptic scale systems in mid-latitude), 
and is expressed by 
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Hydrostatic approximation considers that the pressure at any point is simply 
equal to the weight of a unit cross-section of air above that point, and is 
expressed by 

gdzdp

 

2.3 Thermodynamic equation 
The thermodynamic equation is obtained from the total derivative of the 
equation of state: 
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Where cp=1004 [J.kg-1.K-1] is the specific heat at constant pressure, 
pcR

ppT )/( 0 is the potential temperature [K], R=287 [J.K-1.kg-1] is the gas 
constant, p0=1000 [hPa] is a pressure of reference, T is the absolute 

temperature [K], and q is the rate of heating per unit mass due to radiation, 
conduction, and release of latent heat. 

2.4 Mass conservation 
The conservation of air mass is expressed by the continuity equation in its flux 
form by 
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By using the equality uuu)( , the continuity equation can be 
expressed by its total differential form 
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2.5 Tracer equation 
The mass balance of a tracer i is given by the atmospheric diffusion equation 
where the transport is decomposed into advection and diffusion: 
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where K is the tensor of diffusivity, P is the production term, and L is the 
loss term. The equation is generally expressed for aerosols in term of mass 
mixing ratio aic which is equal to the ratio of aerosol concentration ci 

and air density a

    

2.6 Initial and Boundary conditions 
The solution of the partial derivatives equations for momentum, 
thermodynamics and tracers require the specification of the initial and 
boundary conditions.  

The initial condition (I.C.) consists to specify the three-dimension 
distribution of all prognostic variables at time t=0. If the initial value is 
unknown, a very low value is generally imposed (“cold-start”) and the 
model is run for a period long enough to have the solution the least 
influenced by the initial condition. This length of the simulated period 
influenced by the IC is called spin-up time, and is generally discarded in the 
analysis of the model results. The final distribution can be saved and used as 
warm-start initial condition for subsequent simulations. For transport of 
aerosols, the lifetime in the troposphere is about 2 weeks, which means that 
the spin-up time should be at least 2 weeks. However, if one wants to study 
aerosol in the upper troposphere or lower stratosphere, a one year spin-up 
time is necessary. For General Circulation Model with coupled atmosphere-
ocean models, the spin-up time is several hundred years.  



The boundary condition (B.C.) consists to specify either the prognostic 
variable and/or its flux through the boundaries of the domain. For global 
atmospheric models, there are 2 boundaries: at the model top (generally in 
the upper stratosphere) and at the Earth’s surface. For regional models, there 
are in addition 4 lateral boundaries.  

Lateral boundary conditions  
Generally the pragmatic view is taken that if the lateral boundaries are 
located far enough away from the region of interest, the errors introduced at 
the boundaries will remain within some acceptable tolerance in the interior 
of the domain during the simulation period. 
There are five types of boundary conditions that can be used: 

1. Fixed 
These are the simplest boundary conditions that can be applied. All the 
prognostic variables at the boundaries are specified initially and remain 
constant with time. These boundary conditions are useful for some 
theoretical studies. 

2. Time-dependent:  
The prognostic variable at the boundaries are specified as a smoothly 
varying function of time and are obtained either from observations, large-
scale model simulations, or linear solutions. If the specified values are not 
consistent with the values near the boundary predicted by the model physics, 
noise in the simulated variables will develop near the boundaries. 

3. Time-dependent and inflow/outflow-dependent 
These open boundary conditions allow waves to pass out of the domain. 
They usually produce smooth solutions. 

4. Sponge 
The sponge boundary conditions is given by 
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subscript MC denotes the model-calculated tendency, an LS the large-scale 
tendency, which is obtained either from observations or large-scale model 
simulations, and n is the number of grid points from the nearest boundary 
(n=1 on the boundary) . The weighting coefficients w(n) vary from 0 to 1 as 
n increases (from 1 to typically 4).  

5. Relaxation 
The relaxation boundary condition involves “relaxing” or “nudging” the 
model-predicted variables toward a large-scale analysis or observations. The 
method includes a Newtonian and diffusion term 
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Where F decreases linearly from the lateral boundary 
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Surface boundary conditions 
The boundary condition at the surface is generally expressed in terms of 
turbulent flux. If we separate any variable  into a mean value and a 
perturbation " such that "and 0" , then the turbulent fluxes at the 
surface of the prognostic variables are written by the following expressions: 
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where Cm and Ch are the exchange coefficient for momentum and heat, 
respectively. The subscript S indicates value of variable at the surface and the 
subscript 1 indicates values of variable at the lower model level. 

1111 ,,, cqv are the wind speed, the potential temperature, the specific 

humidity, and a tracer (e.g. aerosol) concentration at the lowest model level. 
The coefficients Cm and Ch are parameterized as a function of the surface 
roughness z0, the Richardson number Ri, among others variables. A complete 
description is given by Stull, An introduction to boundary layer meteorology, Kluwer 
Academic Press, 1988.  

SURFACE TEMPERATURE 
Over land the surface temperature is computed from a surface energy budget 

svsmn
s

g ELHHR
t

T
C

 

Where Cg is the thermal capacity of the ground per unit area [J.m-2.K-1], Rn 

the net radiation, Hm the heat flow into the ground, Hs the sensible heat flux 
into the atmosphere, Lv the latent heat of vaporization, and Es the surface 
moisture flux. 

1) Net Radiative Flux Rn 



Radiation is the driving force of the diabatic planetary boundary layer, 
and it has two components ssn IQR where Qs and Is are the net 
shortwave and longwave irradiances at the surface. 
The amount of solar radiation absorbed by the ground is given by 

00 cos)1( ss RFtQ

 
where ))exp(1)(1()exp(t is the transmitted solar radiation 
at the surface, F0=1396 W.m-2 the solar constant, Rs the surface 
albedo, 0 is the solar zenith angle (cf. Lecture 4). 
The net longwave radiation Is is equal to the sum of the outgoing ( I ) 
and downward ( I ) longwave radiation. The outgoing longwave 
radiation is 
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Where g is the ground emissivity (typical 0.9 to 1), Tg is the ground 

temperature, SB =5.671x10-8 W.m-2.K-4 is the Stefan-Boltzmann 
constant. The downward longwave radiation absorbed at the surface is 
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Where T1 is the atmospheric temperature at the lowest model level 
a is the atmospheric longwave emissivity and can be approximated 

by the relation 
pa w10log17.0725.0

 

Where wp is the precipitable water in centimeters. 
For cloudy sky, the attenuation of shortwave radiation by cloud is 
parameterized with absorption and scattering transmissivities. 
2) Heat Flow to the ground 
The transfer of heat due to molecular conduction is calculated from 
the equation 

)( sgghm TTCCH

 

Where Ch is the heat-tranfer coefficient, Cg the heat capacity of the 
ground, Ts is the surface temperature, and Tg the ground temperature. 
3) Sensible heat flux 
The surface heat flux is given by 111 )( vCCcH gmhpms

 

4) Surface moisture flux 
The surface moisture flux is 111 ))(( vqTqMCCE gSmhs

  

The sea surface temperature (SST) is generally prescribed based on 
observations for example the Reynolds and Smith dataset.  



 
SURFACE SPECIFIC HUMIDITY 
The specific humidity at the surface can be estimated from the relation 
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Where qs(Tg) is the specific humidity at saturation, q1 is the specific 

humidity at the lowest model level, and ),1min('
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 with wk the soil 

porosity and wg the soil water content. The value of wg is obtained from the 
following equation 
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Where Eg is the evaporation rate at the surface, Prec is the precipitation rate, 
wg is the groundwater content, and w2 is the mean value of the groundwater, 

w is the water density, C1=0.1 and C2=0.9, dg is the maximum depth of 
diurnal variation, 1 =86400 s. 

2.7 Tracer equation in generalized coordinates 
Due to Earth sphericity, atmospheric models are expressed into curvilinear 
coordinates instead of Cartesian coordinates (e.g. spherical). For regional 
models, the equations are projected into a Cartesian grid. By using 
conformal mapping, a simple scaling factor is used which allows to easily go 
from one coordinate system to the other, once the equation as been 
expressed in generalized coordinates.   
Criteria for selecting a transformation of coordinates: 

1. Higher resolution in the studied area (to represent properly all orders 
of derivatives) 

2. Axis of coordinates aligned with flow (to avoid cross derivatives) 
3. Move the lateral boundaries far away from the studied area (to avoid 

contamination of the solution by the B.C.) 
4. Simplicity of equations (reduce computing time)  

The Following figure shows the stereographic projection of an hemispherical 
grid which was used to study the effects of long-range transport of pollutants 
from Asia and North America on the background atmosphere of Hawaii. 



  

The continuity equation of a tracer of mass mixing ratio in curvilinear 
coordinates is given by 
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Where is the air density [kg.m-3], 
dt

dq
v i

i is the i component of the wind 

vector, K is the tensor of diffusion, 
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transformation of coordinates from Cartesian xi to curvilinear qj 

If 

 

is the mass mixing ratio of an aerosol, the mass of this aerosol within a 
volume V is given by 
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Such that the time variation of M is given by 
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By applying Stokes’ theorem, this last volume integral reduces to the surface 
integral of the flux of aerosol: 
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In order to transform the coordinates we need to specify the matrix of 

transformation of coordinates
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T , then calculate its determinant 
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Vertical coordinate systems 

The vertical coordinate can be space-based (height or depth with respect to a 
reference surface) or mass-based (pressure, density, potential temperature). 
Hybrid coordinates with a mass-based element are considered to be mass-
based.  

The reference surface is a digital elevation map of the planetary surface. 
This can be a detailed topography or bathymetry digital elevation dataset, or 
a more idealized one such as the representation of a single simpli ed 
mountain or ridge, or none at all. Vertical coordinates requiring a reference 
surface are referred to as terrain-following (e.g s ) and are commonly used. 

The pressure-based coordinates is defined as 
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where ps and pt are the surface and top pressures, and pt is a constant.  

 

Table 13.1 Conversion scaling factors for vertical coordinate systems. 



Coordinate system mz Vertical coordinate 
Altitude 1 dz 
Pressure g
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HYBRID: When the model covers the troposphere, the stratosphere, and 
eventually the mesosphere, a hybrid system ( ) is used instead of sigma 
( ). With a coordinates, near the Earth’s surface model levels are defined 
only by the terrain-following sigma coordinate. In upper model layers, well 
above the topography, the coordinate surfaces may coincide with constant 
pressure surfaces. In between there is a slow transition from sigma to 
pressure. The vertical coordinate is defined by a reference profile of pressure 
P0 and sigma/eta values  at the half-model levels. The pressure at half 
levels can be computed from the surface pressure ps as sl
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Horizontal coordinate systems 

Horizontal spatial coordinates may be polar ( , ) coordinates on the sphere, 
or planar (x,y), where the underlying geometry is Cartesian, or based on one 
of several projections of a sphere onto a plane. Planar coordinates based on a 
spherical projection de ne a map factor allowing a translation of (x,y) to 
( , ).  

Horizontal coordinates may have the important properties of orthogonality 
(when the Y coordinate is normal to the X) and uniformity (when grid lines 
in either direction are uniformly spaced). Numerically generated grids may 
not be able to satisfy both constraints simultaneously.  

A third type of horizontal coordinate often used in this domain is not spatial, 
but spectral. Spectral coordinates on the sphere represent the horizontal 
distribution of a variable in terms of its spherical harmonic coefficients. 



These coefficients can be uniquely mapped back and forth to polar 
coordinates based on Fourier and Legendre transforms, yielding uniformly 
spaced longitudes, and latitudes de ned by a Gaussian quadrature.   

1. Spherical coordinates 
We select (x, y, z) as the local Cartesian coordinates, with x pointing East, y 
pointing North, and z the altitude above sea-level. We select a curvilinear 
system of coordinates with 1q the longitude (positive to the East), 

2q the latitude (positive to the North), and 3q defined above.  

The Cartesian coordinates are related to the spherical coordinates as follow: 
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The matrix [T] is given by 
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The Jacobian of the transformation is given by 
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The wind components ( ,, ) in the coordinates system ( ,, ) are related 
to the wind components (u, v, w) by the following relations: 
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Some assumptions are generally made for the tensor of diffusion: 
1. It is symmetrical 
2. The off-diagonal terms are negligible away from the tropopause and 

mountainous terrain. 
With such assumptions, we get 
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Therefore, the continuity equation of an aerosol of mass mixing ratio is 
given by 
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Multiplying this equation by p* and using 33
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3. Conformal projection 
The horizontal scale factor (m) is defined as the ratio of the distance on the 
grid to the corresponding distance on the Earth’s surface. The projection is 



conformal if the scale is equal in all directions about a point so that the shape 
of geographic features on Earth is preserved. The following projections are 
preserved and the latitude of intersection between the plane of projection and 
the Earth is 1  . 

a) Polar stereographic:   
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sin1 1m 

 

b) Mercator :  
cos

cos 1m 

 

c) Lambert conformal:  The Lambert conformal grid is true at latitudes 30o and 60oN 
so that m=1 at these latitudes.  

In general,
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( o90 ). 

  

For conformal projection the matrix of projection is given by 
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The continuity equation for a tracer of mixing ratio is then given by 
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Similarly, the momentum and thermodynamic equations are given by (for 
detailed derivation of the equations see Zdunkowski and Bott, Dynamics of 
the Atmosphere: A course in theoretical meteorology, Cambridge University 
Press, 2003): 
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where m is the map scale factor, ts ppp* , (u,v,w) are the three 
components of the wind vector, is the longitude,  is the latitude, fc  is the 

Coriolis parameter, q is the adiabatic heating, the D terms represent the 
vertical and horizontal diffusion terms and vertical mixing due to the 
planetary boundary layer or dry convective adjustment, 

)8.01( vpdp qcc where qv us the mixing ratio for water vapor and cpd is the 

heat capacity for dry air, and is the mass mixing ratio of tracer. The 
vertical component of the wind vector is given by 
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which is used in its vertically integrated form 
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and then the vertical velocity in -coordinates, is computed by vertical 
integration 
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The hydrostatic equation is used to compute the geopotential heights from 
the virtual temperature Tv, 
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Where Tv=T(1+0.608qv) is the virtual temperature, and qc and qr are the 
mixing ratios of cloud water and rain water.  

Non-hydrostatic Model 
For non-hydrostatic model, the pressure, temperature and air density is 
decomposed into a constant reference state and perturbations, such as 
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With the full pressure at a grid point given by '* pppp t

 

In general for model grid > 10 km the hydrostatic approximation is valid.  

Nudging 
The method of Newtonian relaxation or nudging relaxes the model variables 
toward observations by adding to the prognostic equations, artificial 
tendency terms based on the difference between the simulated and observed 
values of the same variable. The model solution can be nudged toward either 
gridded analyses or individual observations during a period of time 
surrounding the observations. The predictive equation of variable ),( tx

 

with a nudging term is given by 
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Where G is the nudging factor which determines the relative magnitude of 
the term to all the other model processes in F, )(x is the observation 
quality factor (0 to 1), 0ˆ is the observation. 



The nudging contribution is artificial; therefore it should not be the dominant 
term in the governing equations. It is scaled by the slowest physical process 

in the model and must satisfy the numerical stability criterion
t

G
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If )(x =1 then  
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which has the solution tGettt )ˆ)((ˆ)( 00  where )(t is the 
solution at the initial time t. The model solution approaches the observation 
exponentially with an e-folding time of GTG 1 . This implies that high 
frequency fluctuations in the observations are generally not retained except 
for high values of G ; but then the nudging term may not be small compared 
to F.   


